Punching Machine

24 Materials You Need to Know in Making Stamping Dies

Estimated reading time: 8 minute

Making Stamping Dies

There are more than one hundred kinds of materials that can be used to make stamping dies, ranging from metals, plastics, inorganic non-metals, and paraffin. Let’s take a look at the actual processing and production, the stamping industry uses up to 24 kinds of mold materials. Making Stamping Dies

  • 45: High-quality carbon structural steel is the most commonly used medium carbon quenched and tempered steel. Main features: good comprehensive mechanical properties, low hardenability, easy to produce cracks during water quenching. Small pieces should be quenched and tempered, and large pieces should be normalized. Application example: It is mainly used to manufacture high-strength moving parts, such as turbine impellers, compressor pistons, shafts, gears, racks, and worms. Welded parts should be preheated before welding and annealed to relieve stress after welding. Making Stamping Dies
Making Stamping Dies
Figure 1 No. 45 carbon steel stamping die
  • Q235A (A3 steel): the most commonly used carbon structural steel. Main features: high plasticity, toughness and welding performance, a certain strength of cold stamping performance, and good cold bending performance. Application example: Widely used in parts and welded structures with general requirements. Such as tie rods, connecting rods, pins, shafts, screws, nuts, ferrules, brackets, machine bases, and building structures and bridges with little force. Making Stamping Dies
  • 40Cr: One of the most widely used steel grades in punching dies, it is an alloy structural steel. Main features: After quenching and tempering treatment, it has good comprehensive mechanical properties, low-temperature impact toughness, low notch sensitivity, good hardenability, and high fatigue strength can be obtained when oil cooling and parts with complex shapes are easy to be obtained when water cooling. Cracks occur. Medium cold bending plasticity, good machinability after tempering or quenching Co-infiltration, and high-frequency surface hardening. Application example: After quenching and tempering, it is used to manufacture medium-speed and medium-load parts, such as machine tool gears, shafts, worms, spline shafts, and thimble sleeves; Grinding parts, such as gears, shafts, main shafts, crankshafts, mandrels, sleeves, pins, connecting rods, screws, and nuts, intake valves, etc.; Parts, such as oil pump rotors, sliders, gears, spindles, and collars, etc.; used to manufacture heavy-duty, low-impact, wear-resistant parts such as worms, spindles, shafts, and collars, etc. after quenching and low-temperature tempering; carbon After nitriding treatment, transmission parts with large size and high low-temperature impact toughness, such as shafts and gears, are manufactured. Making Stamping Dies
  • HT150: gray cast iron. Application examples: gearbox, machine bed, box, hydraulic cylinder, pump body, valve body, flywheel, cylinder head, pulley and bearing cover, etc.
  • 35: Common materials for various standard parts and fasteners. Main features: appropriate strength, good plasticity, high cold plasticity, and acceptable weldability. Local upsetting and wire drawing can be performed in the cold state. Low hardenability, use after normalizing or quenching and tempering. Application example: It is suitable for the manufacture of parts with small sections and large loads, such as crankshafts, levers, connecting rods, shackles, various standard parts, and fasteners. Making Stamping Dies
  • 65Mn: commonly used spring steel. Application example: various flat and round springs, seat cushion springs, and spring springs of small size, can also be made into spring rings, valve springs, clutch reeds, brake springs, cold coil springs, circlips, etc. Making Stamping Dies
  • 0Cr18Ni9: The most commonly used stainless steel (US steel number 304, Japanese steel number SUS304). Features and applications: It is the most widely used stainless heat-resistant steel, such as food equipment, general chemical equipment, etc. Making Stamping Dies
Figure 2 Stainless steel stamping die
Figure 2 Stainless steel stamping die
  • Cr12: commonly used cold work die steel (US steel number D3, Japanese steel number SKD1). Characteristics and application: Cr12 steel is a widely used cold work die steel, which is a high-carbon and high-chromium steel. The steel has good hardenability and good wear resistance; because the carbon content of Cr12 steel is as high as 2.3%, the impact toughness is poor, it is easy to be brittle, and it is easy to form uneven eutectic carbides; Cr12 steel is due to With good wear resistance, it is mostly used to manufacture cold punches, punches, blanking dies, cold heading dies, cold extrusion dies, punches and dies, drill sleeves, gauges that require high wear resistance with less impact load. , wire drawing dies, stamping dies, thread rolling plates, deep drawing dies and cold pressing dies for powder metallurgy, etc.
  • DC53: The commonly used cold work stamping dies steel imported from Japan, the steel number of the Japanese Datong Special Steel Co., Ltd. manufacturer. Features and applications: high strength and toughness cold work die steel. After high-temperature tempering, it has high hardness, high toughness, and good wire cutting performance. Used for precision cold stamping dies, drawing dies, wire rolling dies, cold blanking dies and punches, etc.
  • DCCr12MoV: Wear-resistant chromium steel is made in China, with lower carbon content than Cr12 steel, and Mo and V are added to improve the unevenness of carbides. Mo can reduce carbide segregation and improve hardenability, while V can refine grains and increase toughness. This steel has high hardenability, the cross-section can be completely hardenable below 400mm, and it can still maintain good hardness and wear resistance at 300~400℃. Compared with Cr12, it has higher toughness and less volume change during quenching. Making Stamping Dies
  • It has high wear resistance and good comprehensive mechanical properties. Therefore, it is possible to manufacture various dies with a large cross-section, complex shapes and high impact, such as ordinary drawing dies, punching dies, punching dies, blanking dies, trimming dies, rolling dies, wire drawing dies, cold extrusion dies, Cold cutting scissors, circular saws, standard tools and measuring tools, etc. Making Stamping Dies
  • SKD11: Tough chrome steel, produced by Hitachi, Ltd., Japan. Technically, the casting structure in the steel is improved, the grains are refined, the toughness and wear resistance of Cr12MoV are improved, and the service life of the mold is prolonged. Making Stamping Dies
  • D2: High carbon and high chromium cold work steel, produced in the United States. It has high hardenability, hardenability, wear resistance, good high-temperature oxidation resistance, and good corrosion resistance after quenching and polishing. Heat treatment deformation is small. It is suitable to manufacture all kinds of cold working dies, cutting tools, and measuring tools that require high precision and long life, such as drawing dies, cold extrusion dies and cold shearing knives. Making Stamping Dies
Figure 3 High chromium steel stamping die
Figure 3 High chromium steel stamping die
  • SKD11 (SLD): non-deformable toughness high chromium steel, produced by Hitachi, Ltd., Japan. Due to the increase in the content of Mo and V in the steel, the casting structure in the steel is improved, the grains are refined, and the carbide morphology is improved, so the strength and toughness (flexural strength, deflection, impact toughness, etc.) of this steel are higher than those of SKD1 and SKD1, With high D2, wear resistance has also increased, and it has higher tempering resistance. The practice has proved that the life of this steel mold has been improved compared with Cr12MoV. It is often used to manufacture molds with high requirements, such as drawing molds, molds for impact grinding wheels, etc. Making Stamping Dies
  • DC53: High toughness and high chromium steel, produced by Datong Co., Ltd., Japan. Heat treatment hardness is higher than SKD11. After tempering at a high temperature (520~530) ℃, it can reach a high hardness of 62~63HRC. In terms of strength and wear resistance, DC53 exceeds SKD11, and the toughness is twice that of SKD11. The toughness of DC53 seldom occurs cracks and cracks in cold work die manufacturing, which greatly improves the service life. The residual stress is small, and the residual stress is reduced by turning back at a high temperature. Because the cracks and deformation after wire cutting are suppressed, the machinability and abrasiveness exceed SKD11, and it is used for precision stamping dies, cold forging and deep drawing dies, etc.
  • SKH-9: General-purpose high-speed steel with high wear resistance and toughness, produced by Hitachi, Ltd., Japan. For cold forging dies, slitters, drills, reamers, punches, etc. Making Stamping Dies
  • ASP-23: Powder metallurgy high-speed steel, made in Sweden. Carbide distribution is extremely uniform, wear resistance, high toughness, easy processing, and heat treatment dimensional stability. Used for all kinds of long-life cutting tools such as punches, deep drawing dies, drilling dies, milling cutters, and shear blades. Making Stamping Dies
  • P20: Plastic molds of the size required for general requirements, produced in the United States. Electrically erodible operation. The factory state is pre-hardened HB270~300, quenched hardness HRC52.
  • 718: Large and small plastic molds with high requirements, made in Sweden. Electrically erodible operation. Factory state pre-hardened HB290~330, quenched hardness HRC52.
  • Nak80: High-mirror, high-precision plastic mold, produced by Datong Co., Ltd., Japan. The factory state is pre-hardened HB370~400, quenched hardness HRC52.
  • S136: Anti-corrosion and mirror-polished plastic mold, made in Sweden. Pre-hardened HB<215 in factory state, quenched hardness HRC52. Making Stamping Dies
  • H13: Commonly used die-casting die for aluminum, zinc, magnesium, and alloy die-casting, hot stamping die, aluminum extrusion die, etc. Making Stamping Dies
  •  SKD61: Advanced die-casting mold, produced by Hitachi, Ltd., Japan. Through the ballast redissolving technology, the service life is significantly improved than that of H13. For hot stamping dies, aluminum extrusion dies.
Figure 4 Advanced casting die
Figure 4 Advanced casting die
  •  8407: Advanced die-casting mold, made in Sweden. For hot stamping dies, aluminum extrusion dies.
  • FDAC: Added sulfur to enhance its ease of cutting. The factory pre-hardened hardness is HRC38~42, which can be directly engraved without quenching and tempering. It is used for small batch molds, simple molds, various resin products, sliding parts, and mold parts with a short delivery time. Such as zipper mold, glasses frame mold, and so on.

Making stamping dies, also known as die tooling or stamping tooling, is a crucial process in metalworking and manufacturing. Stamping dies are specialized tools used to cut, form, or shape sheet metal or other materials into specific designs or parts. Here’s an overview of the steps involved in making stamping dies: Making Stamping Dies

Design and Planning:

Determine the specific requirements of the stamped part, including dimensions, tolerances, and material type.
Create a detailed design or CAD (Computer-Aided Design) drawing of the part and the stamping die, including the cavity, punch, and any necessary features.
Plan the layout of the die components, such as punches, dies, guides, and strippers.
Material Selection:

Choose the appropriate materials for the die components. Common materials for dies include tool steel, carbide, and high-speed steel, depending on the complexity and volume of work.
Ensure that the material selected can withstand the forces and wear associated with the stamping process.
Rough Machining:

Start with rough machining of the die components using milling machines, lathes, or other cutting tools. Making Stamping Dies
Rough machining creates the basic shape of the die components, leaving enough material for subsequent finishing operations.
Heat Treatment: Making Stamping Dies

Heat treat the die components to enhance their hardness and durability. This step involves processes like hardening, tempering, and stress relieving to achieve the desired material properties.
Precision Machining: Making Stamping Dies

Perform precision machining to achieve the final dimensions and surface finish of the die components. This may include grinding, milling, drilling, and honing.
Accuracy and precision are critical in this step to ensure the stamped parts meet the required specifications.
Assembly:

Assemble the die components, including the punch, die, guides, strippers, and any additional components such as springs or ejector systems.
Proper alignment and clearances between components are essential to ensure smooth and efficient stamping.
Testing and Adjustment:

Test the assembled die on a press machine to check for any issues, such as misalignment, clearance problems, or inadequate material flow.
Make necessary adjustments to optimize the die’s performance and achieve the desired part quality.
Surface Treatment:

Apply surface treatments or coatings to the die components to improve wear resistance, reduce friction, or prevent corrosion.
Trial Runs and Fine-Tuning:

Conduct trial runs on the press to stamp sample parts and fine-tune the die’s operation until it consistently produces parts within specified tolerances.
Quality Control:

Implement a rigorous quality control process to inspect stamped parts for dimensional accuracy and surface finish.
Ensure that the die maintains its performance over time with regular maintenance and replacement of worn components.
Production:

Once the stamping die is fully tested and optimized, it can be used for high-volume production of stamped parts.
Creating stamping dies is a specialized and skill-intensive process that requires precision engineering, machining expertise, and a deep understanding of materials and manufacturing principles. High-quality stamping dies are essential for producing consistent and accurate stamped parts in various industries, including automotive, aerospace, electronics, and consumer goods manufacturing.

Punching Machine For Sale

2 thoughts on “24 Materials You Need to Know in Making Stamping Dies

  1. Tom Stanlly says:

    Thank you for your article! It is very interesting!
    Do you make punching mold?
    I have a factory and I need molds!

    1. Wendy says:

      Hello, Tom!

      Yes, we can make punching molds for you.
      Please send me your mold drawing or product sizes, we can quote for you!

Leave a Reply

Your email address will not be published. Required fields are marked *